Manual Transmission T56 | T5 | MN12 | Clutches | Hydraulics | Shifters

Noob with clutch question

Thread Tools
 
Search this Thread
 
Old 10-11-2006, 08:22 AM
  #1  
On The Tree
Thread Starter
 
LS1Cobra's Avatar
 
Join Date: Apr 2005
Location: S. Philly
Posts: 192
Likes: 0
Received 0 Likes on 0 Posts
Default Noob with clutch question

Hi all,
I am new to the M6 hydraulic clutch system. I am doing a swap and when I didn't connect the clutch master cylinder I was still able to shift the trans into gears. Is this right? The reason I ask because now I have connected the clutch master cylinder and I want to know how do you verify that the clutch master cylinder is actually working? thanks for any inputs.
Vinh
Old 10-12-2006, 08:14 AM
  #2  
On The Tree
Thread Starter
 
LS1Cobra's Avatar
 
Join Date: Apr 2005
Location: S. Philly
Posts: 192
Likes: 0
Received 0 Likes on 0 Posts
Default hydraulic clutch description..

Thanks for nothing. I got the answer all along. Just forgot to dig it up. Here is the info if someone needs it in the future.
Vinh

Hydraulic Clutch Description
Principal Components
The driving member and the driven member are held in contact by spring pressure. This pressure is exerted by a one-piece conical or diaphragm spring.

A diaphragm spring is a conical piece of spring steel that has been specially stamped to give it greater flexibility. The diaphragm is positioned between the cover and the pressure plate so that the diaphragm spring is nearly flat when the clutch is in the engaged position. The action of this type of spring is similar to that of an ordinary oil can.

The pressure of the inner rim of the spring on the pressure plate decreases as the flat position is passed. The inner rim of the diaphragm bears on the pressure plate and is pivoted on a ring on the outer edge of the pressure plate. The application of a pulling load on the inner section of the pressure plate will cause the inner rim to move away from the flywheel and allow the pressure plate to move away from the clutch disc, thereby releasing or disengaging the clutch. When the pressure is released from the inner section, the OIL CAN action of the diaphragm causes the inner section to move in, and the movement of the inner rim forces the pressure plate against the clutch disc, thus engaging the clutch.

The clutch release bearing is moved by the actuator assembly to move the release levers which move the pressure plate to the rear, thus separating the clutch disc from the flywheel when the clutch pedal is depressed by the driver. A piston return spring in the actuator cylinder preloads the clutch linkage and assures a small load on the release bearing with the actuator assembly at all times. As the clutch disc wears, the diaphragm spring fingers move forward forcing the release bearing, actuator assembly, and pushrod to move. This movement forces the actuator cylinder piston to move forward in its bore, consuming hydraulic fluid from the master cylinder reservoir, thereby providing the SELF-ADJUSTING feature of the hydraulic clutch linkage system.

Clutch Driving Members
The clutch driving members consist of two, flat surfaced, iron plates, machined to a smooth finish. One of these surfaces is the rear face of the engine flywheel and the other is a comparatively heavy flat ring, with one side machined, known as the clutch pressure plate.

Clutch Driven Members
The driven member (friction or clutch disc) consists of a hub and a plate, with facings attached to the plate. The clutch disc has cushion springs and dampening springs. The cushion springs are slightly waved, or curled. The cushion springs are attached to the plat, and the clutch facings are attached to the springs. When the clutch is engaged, the cushion springs compress slightly to take up the shock of engagement. The dampening springs are heavy coil springs set in a circle around the hub. The hub is driven through these springs. They help to smooth out the torsional vibration so that the power flow to the transmission is smooth. There are grooves in both sides of the clutch disc facings. These grooves prevent the facings from sticking to the flywheel face and pressure plate when the clutch is disengaged. The grooves break any vacuum that might form and cause the facings to stick to the flywheel ore pressure plate.

Clutch Operating Members
The driving member and the driven member are held in contact by spring pressure. This pressure is exerted by a one-piece conical or diaphragm spring.

A diaphragm spring is a conical piece of spring steel that has been specially stamped to give it greater flexibility. The diaphragm is positioned between the cover and the pressure plate so that the diaphragm spring is nearly flat when the clutch is in the engaged position. The action of this type of spring is similar to that of an ordinary oil can.

The pressure of the inner rim of the spring on the pressure plate decreases as the flat position is passed. The inner rim of the diaphragm bears on the pressure plate and is pivoted on a ring on the outer edge of the pressure plate. The application of a pulling load on the inner section of the pressure plate will cause the inner rim to move away from the flywheel and allow the pressure plate to move away from the clutch disc, thereby releasing or disengaging the clutch. When the pressure is released from the inner section, the OIL CAN action of the diaphragm causes the inner section to move in, and the movement of the inner rim forces the pressure plate against the clutch disc, thus engaging the clutch.

The clutch release bearing is moved by the actuator assembly to move the release levers which move the pressure plate to the rear, thus separating the clutch disc from the flywheel when the clutch pedal is depressed by the driver. A piston return spring in the actuator cylinder preloads the clutch linkage and assures a small load on the release bearing with the actuator assembly at all times. As the clutch disc wears, the diaphragm spring fingers move forward forcing the release bearing, actuator assembly, and pushrod to move. This movement forces the actuator cylinder piston to move forward in its bore, consuming hydraulic fluid from the master cylinder reservoir, thereby providing the SELF-ADJUSTING feature of the hydraulic clutch linkage system.

Hydraulic Clutch Description
The clutch hydraulic system consists of a master cylinder and an actuator cylinder. When pressure is applied to the clutch pedal (pedal depressed), the pushrod contacts the plunger and pushes it down the bore of the master cylinder. In the first 0.8 mm (0.031 in) of movement, the recuperation seal closes the port to the fluid reservoir tank, and as the plunger continues to move down the bore of the cylinder, the fluid is forced through the outlet line to the actuator cylinder. As fluid is pushed down the pipe from the master cylinder, this in turn forces the pistons in the actuator cylinder outward. As the actuator cylinder piston moves forward, it forces the release bearing to disengage the clutch pressure plate from the clutch disc. On the return stroke (pedal released), the plunger moves back as a result of the return pressure of the clutch. Fluid returns to the master cylinder and the final movement of the plunger opens the port to the fluid reservoir, allowing an unrestricted flow of fluid between system and reservoir.

Hydraulic Clutch Fluid Description
When adding, refilling or replacing hydraulic clutch fluid after service operations, use hydraulic clutch fluid GM P/N 12345347 or an equivalent fluid that meets DOT 3 specifications only (such as DOT 3 brake fluid)




All times are GMT -5. The time now is 07:35 PM.