Forced Induction Superchargers | Turbochargers | Intercoolers

Motor octane vs research octane

Thread Tools
 
Search this Thread
 
Old 12-10-2003, 03:08 PM
  #1  
LS1Tech Co-Founder
Thread Starter
iTrader: (34)
 
Pro Stock John's Avatar
 
Join Date: Nov 2001
Location: Chicago, IL
Posts: 44,694
Received 1,140 Likes on 740 Posts

Default Motor octane vs research octane

Any good links for this?
Old 12-10-2003, 04:06 PM
  #2  
TECH Addict
 
ChrisB's Avatar
 
Join Date: Nov 2001
Location: College Station, Tx
Posts: 2,207
Likes: 0
Received 0 Likes on 0 Posts
Default

http://www.faqs.org/faqs/autos/gasoline-faq/part1/
Old 12-11-2003, 10:55 AM
  #3  
LS1Tech Co-Founder
Thread Starter
iTrader: (34)
 
Pro Stock John's Avatar
 
Join Date: Nov 2001
Location: Chicago, IL
Posts: 44,694
Received 1,140 Likes on 740 Posts

Default

Great link I will have to take some time to go through all the sections.

Some neat sections:
6.5 What does the Motor Octane rating measure?

The conditions of the Motor method represent severe, sustained high speed,
high load driving. For most hydrocarbon fuels, including those with either
lead or oxygenates, the motor octane number (MON) will be lower than the
research octane number (RON).

6.6 What does the Research Octane rating measure?

The Research method settings represent typical mild driving, without
consistent heavy loads on the engine.

6.15 Can I mix different octane fuel grades?

Yes, however attempts to blend in your fuel tank should be carefully
planned. You should not allow the tank to become empty, and then add 50% of
lower octane, followed by 50% of higher octane. The fuels may not completely
mix immediately, especially if there is a density difference. You may get a
slug of low octane that causes severe knock. You should refill when your
tank is half full. In general the octane response will be linear for most
hydrocarbon and oxygenated fuels eg 50:50 of 87 and 91 will give 89.

Attempts to mix leaded high octane to unleaded high octane to obtain higher
octane are useless for most commercial gasolines. The lead response of the
unleaded fuel does not overcome the dilution effect, thus 50:50 of 96 leaded
and 91 unleaded will give 94. Some blends of oxygenated fuels with ordinary
gasoline can result in undesirable increases in volatility due to volatile
azeotropes, and some oxygenates can have negative lead responses. The octane
requirement of some engines is determined by the need to avoid run-on, not
to avoid knock.

6.18 How can I increase the fuel octane?

Not simply, you can purchase additives, however these are not cost-effective
and a survey in 1989 showed the cost of increasing the octane rating of one
US gallon by one unit ranged from 10 cents ( methanol ), 50 cents (MMT),
$1.00 ( TEL ), to $3.25 ( xylenes ) [108]. Refer to section 6.20 for a
discussion on naphthalene ( mothballs ). It is preferable to purchase a
higher octane fuel such as racing fuel, aviation gasolines, or methanol.
Sadly, the price of chemical grade methanol has almost doubled during 1994.
If you plan to use alcohol blends, ensure your fuel handling system is
compatible, and that you only use dry gasoline by filling up early in the
morning when the storage tanks are cool. Also ensure that the service station
storage tank has not been refilled recently. Retailers are supposed to wait
several hours before bringing a refilled tank online, to allow suspended
undissolved water to settle out, but they do not always wait the full period.

6.19 Are aviation gasoline octane numbers comparable?

Aviation gasolines were all highly leaded and graded using two numbers, with
common grades being 80/87, 100/130, and 115/145 [109,110]. The first number is
the Aviation rating ( aka Lean Mixture rating ), and the second number is the
Supercharge rating ( aka Rich Mixture rating ). In the 1970s a new grade,
100LL ( low lead = 0.53mlTEL/L instead of 1.06mlTEL/L) was introduced to
replace the 80/87 and 100/130. Soon after the introduction, there was a
spate of plug fouling, and high cylinder head temperatures resulting in
cracked cylinder heads [110]. The old 80/87 grade was reintroduced on a
limited scale. The Aviation Rating is determined using the automotive Motor
Octane test procedure, and then converted to an Aviation Number using a
table in the method. Aviation Numbers below 100 are Octane numbers, while
numbers above 100 are Performance numbers. There is usually only 1 - 2
Octane units different to the Motor value up to 100, but Performance numbers
varies significantly above that eg 110 MON = 128 Performance number.

The second Avgas number is the Rich Mixture method Performance Number ( PN
- they are not commonly called octane numbers when they are above 100 ), and
is determined on a supercharged version of the CFR engine which has a fixed
compression ratio. The method determines the dependence of the highest
permissible power ( in terms of indicated mean effective pressure ) on
mixture strength and boost for a specific light knocking setting. The
Performance Number indicates the maximum knock-free power obtainable from a
fuel compared to iso-octane = 100. Thus, a PN = 150 indicates that an engine
designed to utilise the fuel can obtain 150% of the knock-limited power of
iso-octane at the same mixture ratio. This is an arbitrary scale based on
iso-octane + varying amounts of TEL, derived from a survey of engines
performed decades ago. Aviation gasoline PNs are rated using variations of
mixture strength to obtain the maximum knock-limited power in a supercharged
engine. This can be extended to provide mixture response curves which define
the maximum boost ( rich - about 11:1 stoichiometry ) and minimum boost
( weak about 16:1 stoichiometry ) before knock [110].

The 115/145 grade is being phased out, but even the 100LL has more octane
than any automotive gasoline.

6.20 Can mothballs increase octane?

The legend of mothballs as an octane enhancer arose well before WWII when
naphthalene was used as the active ingredient. Today, the majority of
mothballs use para-dichlorobenzene in place of naphthalene, so choose
carefully if you wish to experiment :-). There have been some concerns about
the toxicity of para-dichlorobenzene, and naphthalene mothballs have again
become popular. In the 1920s, typical gasoline octane ratings were 40-60
[11], and during the 1930s and 40s, the ratings increased by approximately 20
units as alkyl leads and improved refining processes became widespread [12].

Naphthalene has a blending motor octane number of 90 [52], so the addition of
a significant amount of mothballs could increase the octane, and they were
soluble in gasoline. The amount usually required to appreciably increase the
octane also had some adverse effects. The most obvious was due to the high
melting point ( 80C ), when the fuel evaporated the naphthalene would
precipitate out, blocking jets and filters. With modern gasolines,
naphthalene is more likely to reduce the octane rating, and the amount
required for low octane fuels will also create operational and emissions
problems.

7.4 What is the effect of changing the ignition timing?

The tendency to knock increases as spark advance is increased. For an engine
with recommended 6 degrees BTDC ( Before Top Dead Centre ) timing and 93
octane fuel, retarding the spark 4 degrees lowers the octane requirement to
91, whereas advancing it 8 degrees requires 96 octane fuel [27]. It should
be noted this requirement depends on engine design. If you advance the spark,
the flame front starts earlier, and the end gases start forming earlier in
the cycle, providing more time for the autoigniting species to form before
the piston reaches the optimum position for power delivery, as determined by
the normal flame front propagation. It becomes a race between the flame front
and decomposition of the increasingly-squashed end gases. High octane fuels
produce end gases that take longer to autoignite, so the good flame front
reaches and consumes them properly.

The ignition advance map is partly determined by the fuel the engine is
intended to use. The timing of the spark is advanced sufficiently to ensure
that the fuel-air mixture burns in such a way that maximum pressure of the
burning charge is about 15-20 degree after TDC. Knock will occur before
this point, usually in the late compression - early power stroke period.
The engine management system uses ignition timing as one of the major
variables that is adjusted if knock is detected. If very low octane fuels
are used ( several octane numbers below the vehicle's requirement at optimal
settings ), both performance and fuel economy will decrease.
produces a modified engine that does not require water injection.



Quick Reply: Motor octane vs research octane



All times are GMT -5. The time now is 04:20 PM.